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Abstract

When building smaller, less expensive spacecraft, there is a

need for intelligent fault tolerance vs. increased hardware

redundancy. If fault tolerance can be achieved using

existing navigation sensors, cost and vehicle complexity

can be reduced. A maximulrvlikelihood-based approach to

thruster fault detection and identification (FDI) for

spacecraft isdeveloped here and applied in simulation to
the )(-38 space vehicle. The system uses only gyro signals

to detect and identify hard, abrupt, single- and multiple-jet

on- and off-failures. Faults are detected within one second

and identified within one to five seconds.

1. Introduction

The FDI system presented here was developed through

application to two specific thruster-controlled spacecraft

presently under development at NASA Johnson Space

Center: the X-38 [12] and the MIm-AERCam. Its

application to the X-38, shown in Figure 1, is presented in

this paper.

Figure 1: x38, with entry vehicle and de-orbit

propulsion Stage [7]

The Crew Return Vehicle (CRV) consists of a manned

space vehicle, the Entry Vehicle (EV), based on a lifting-

body design, and a De-orbit Propulsion Stage (DPS). The
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CRV is designed to remain docked to the space station in a

dormant mode for several years until needed by the crew in

an emergency. The X-38 (vehicle 201) is the unmanned test

vehicle for the CRV. Both vehicles are designed to

maneuver on-orbit, de-orbit, and land using a large parafoil.

The DPS includes a set of axial and reaction control system

(RCS) thrusters fed by three mono-propellant hydrazine

tanks. Although the CRV will have pressure sensors in the

thrusters to detect failures, the X-38 has only temperature

sensors. In this research, a fault detection and identification

(FDI) system is developed that uses only gyro signals

(angular rate measurements) to detect and identify abrupt,

single- and multiple-jet, hard-on or hard-off thruster
failures.

1.1 Related research

Several FDI approaches reported in the literature [4]

perform well on a variety of applications. However, the on-

off nature of the thrusters present in the class of

applications addressed here limits the viability of many

general-purpose methods. For example, if a thruster has

failed off, it will appear to be working correctly at all times

that it is not commanded to fire. This paper presents a

general approach for this class of problems that has been

validated through application to specific, realistic spacecraft

applications.

Deyst and Deckert [2] developed a mximum-likelihood

based approach for detecting leaking thrusters for the Space

Shuttle orbiter's RCS jets. The method for detecting soft

failures was also extended to detect hard RCS jet failures.

The maximum-likelihood method presented in that work is

used and extended in this research.

Wilson and Rock [10] [11] developed an FDI method based

on exponentially weighted recursive least squares

estimation using accelerometer and angular rate sensors. A

neural network then provided adaptive control

reconfiguration to multiple destabilizing hard and soft

thruster failures. This was applied to a 3-degree-of-freedom

air-bearing vehicle.

2. Problem definition

Hard, abrupt, thruster failures resulting from a single point

of failure (in valves, plumbing, electronics, etc.) are

monitored. These can include single- or (simultaneous)



multiple-jetfailuresin eithera failed-onor failed-off
condition.TheDPShas8 axialthrusters(500Newtons
thr'.'.stleveleach)thatfirealongthelongitudinalaxisofthe
vehicle,providingthe requiredde-orbitthrustfor the
13,600kgvehicle.Duringthe8-to-15-minutede-orbitburn,
sixoftheeightthrustersfirecontinuously,controlledopen
loop,withthesixchosensymmetricallytoproduceminimal
torqueon thevehicle.TheDPSalsocontains8 RCS
thrusters(106Newtonsthrustleveleach)thatarefiredin
setsoftwoorfourbytheattitudecontrolsystemtocontrol
theroll,pitch,andyawaboutthebodyaxes.TheEV has a

completely separate set of RCS thrusters for use after DPS

separation- those are not considered here. Figure 2 is a

rear-view schematic of the J_38 showing EV RCS, DPS

RCS, and DPS axial thrusters. The axial thrusters fire

directly back along the _axis, and the DPS RCS thrusters

ftre in the y-z plane, with no x-axis component.
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Figure 2:X-38 thruster configuration

Accelerometers and ring-laser gyros in the Honeywell

Space Integrated GPS / INS (SIGI) [9] are available for

monitoring vehicle motions. Temperature sensors in the

thrusters provide failure information as well, but the

response time Iimits the ability to deiect failures sufficiently

quickly - they rise in about one second, but cool over a

period of minutes. At this point, the Fault Detection and

Identification (FDI) system has been developed without

using temperature information, but it could be added at a

later point. Thruster faults will be detected by comparing

vehicle motions (at this point, only rotational accelerations

are used, but translational accelerations would enable even

more accurate FDI) to the vehicle motions that would result
if certain failures have occurred.

2.1 Equations of motion

Starting with Euler's dynamical equation, and assuming the

spacecraft inertia matrix is constant, the rotational equations

of motion (EOM) are [1]

= I-1 (_- - (_ x I(2)

where I is the spacecraft inertia matrix, _o is the angular

velocity of the body-fixed frame with respect to an inertial

reference frame, and _is the sum of all torques on the body.

2.2 Simulation

Several random variations are added to this dynamic model,

including (values given are the 3-sigma value of a Gaussian

distribution about the true or nominal value): pulse-to-pulse

thruster strength variability of 15%; constant thruster

strength bias of 5%; inertia matrix elements constant bias of

5%; constant mass bias of 1%; and center of mass (CM)

location offset of 5 mm along _ and y-axes and 25 mm

along the z-axis 4. These values are all conservative

estimates (i.e., at least as large as the actual) based on the

actual X-38 design.

A dynamic simulation was developed using MATLAB [6].

As with the X-38 design, the control loop runs at 10 Hz,

and unfiltered gyro data is read at 50 Hz. The FDI runs at

10 Hz. A controller that regulates to a commanded attitude

calculates the thruster commands; the EOM from above,

including the random variations, are integrated; the FDI

system detects and identifies failures; and a MATLAB-

based visualization displays the vehicle status and FDI

results as shown in Figure 4.

3. Fault detection and identificatio n

It is generally true in system identification 0D) or FDI

systems that reducing the degrees of freedom to be

considered or otherwise constraining the problem will

improve identification or detection performance. As will be

discussed in Section 3.10, some alternative approaches

were initially used to solve this problem that attempted to

identify the strengths of the un-failed thrusters as well as

finding the failures. This approach worked well on a

simplified Version of the problem, but became unreliable

when all 16 thrusters were present, both on and off failures

were considered, mass properties were allowed to vary

within tolerance, and in the presence of gyro noise. This led

to the approach described below, which solves the problem

taking full advantage of the problem, statement - namely

that only a single failure mode from a finite list of

candidates can be present, and th_it it will appear abruptly.

3.1 Summary of the algorithm, nomenclature

At every control update, the disturbing acceleration,

aai,_rbing, i s calculated. This vector is compared with the

vector of disturbing angular accelerations corresponding to
each possible failure mode. After a fault is detected, and

once a clear match is found (the likelihood is sufficiently

higher than all other possibilities), the failure mode is

identified. Specifics regarding filtering and other

calculations follow.

a The SIGI gyro noise spec was used, but is not published here



active - describes individual failure modes at each control

update. An "off" ("on") failure is said to be active if

the corresponding thruster is (s not) commanded to

fire during that sample period.

D - [3-by-N matrix] unit vectors indicating the direction of

thrust in the body frame

F.o.. - [N-by-N diagonal matrix] nominal strength of each

thruster at full tank pressure

F.o._,k - [N-by-/vector] nominal force from each thruster at

time step k, accounting for estimated blowdown and

firing commands

i - failure mode number

inactive - opposite of active

/no= - [3-by-3 matrix] nominal spacecraft inertia tensor

k - control (and FDI) update counter

L - [3-by-N matrix] x-y-z location of each thruster in the

body frame (changes with the center of mass location)

N- number of thrusters, 16 for the X-3 8

Pa - [3-by-3 matrix] estimation error covariance of the

disturbing acceleration

Tc..... a.k- IN-by-1 vector of 1's and O's] which thrusters

are commanded to fire at time step k

6_ - measured (estimated) vehicle ang,,ular acceleration

_.o_-syste_. - nominal-system acceleration - the angular

acceleration that should result if no failures are present

and all physical parameters are at their nominal value

_dist._bi.g -- [3-by-] vector] measured disturbing

acceleration, _ disturbing = _ -- (_".... -system

adisturbing i -- disturbing acceleration vector corresponding

to failure mode, i, based on nominal values. For

example, failure mode #1 corresponds to RCS jet 1

being failed off, and O_aist_rbi.g I is [-0.0144, -0.0015,

0.0045] rad/sec2 for the body roll pitch and yaw axes.

This means that ifRCS jet 1 is commanded to fire, and

it has failed off, _disturbing should equal O_aist_b,.g 1

aai.t_bi.g - [3-by-1 vector] disturbing acceleration vector

corresponding to the true failure mode

Fbzo_o_ - a scalar multiplier represeming the ieduction in

thrust with reduced tank pressure

)_active,i -- likelihood argument for failure mode i, based on

times when the failure mode is acti-,e

_4nactive, i -- likelihood argument for failure mode i, based on

times when the failure mode is not active

_o_,k- [3-by-I vector] nominal torque on the vehicle about

the nominal center of mass (CM) due to the thrusters

firing at time step k

3.2 Cataloging failure modes

(_disturbingi is pre-calculated for evmy possible failure

mode. Multiple-jet failure modes require further cataloging

of each combination of thrusters that may be active. This

cataloging is done pre-flight, and the values are updated

periodically based on the state of the blowdown (the

nominal strength of all thrusters drops as the tanks empty).

3.3 Estimating angular acceleration

O_ is calculated at each FDI update based on the previous 5

gyro samples (covering one full control interval). Assuming

small angular rates (so axes are dynamically de-coupled)

and that acceleration is constant during each control time

period (corresponding to thruster firing times), the

acceleration is estimated by fitting a line to the data and

taking the slope as shown by the solid line in Figure 3. This

least-squares fit is implemented as a computationally

efficient linear FIR filter. When performing the fit, the line

segment is constrained to begin where the previous segment

ended, leading to a contiguous line and improving the

estimate. A different _ estimation algorithm or sensor may

be used with no changes to the rest of the FDI algorithm.

I rawgyro sample [LS fit over control update [ • .

.o °

• •

e

gyro sample number

Figure 3: Estimation of angular acceleration

3.4 Calculating nominal-system acceleration

t_.o.,_system is calculated assuming no failures are present

and all physical parameters are at their nominal value

(identified values can be used as an alternative, as

mentioned in Section 3.11). The force from each thruster,

F.o.,k, resulting torque from each thruster, Z_o=,k, and finally

the vehicle equations of motion from Section 2 (with

O)me_s,k coming directly from the gyros) are used as

follows.

z .... k =(LxD)F.o_k

where the LxD cross-product is taken on each column.

O_..... system.k= I,o,,-' (r,o..k -c°_.e=._. XI, oJ°_. .... k)

The disturbing acceleration can then be calculated.

_ disturbing = & -- (_nora-system



3.5 Windowing

If the signal-to-noise ratio were high enough, maximum
^

likelihood FDI analysis of the C_disturbing readings could be

carried out on the values at each time step, as was done in

[2]. However, in _xis application, sensor noise and mass

property variations require that values from multiple time

steps be combined. Since it is known that failures will occur

abruptly, a windowing method is preferred over an iIR

(e.g., exponential) filter that would carry through

information for longer. In this application a window size of

10 (equal to one second) was found to provide a good

balance between speed of response and accuracy. Also, a

minimum of 5 samples is required before maximum

likelihood FDI analysis is allowed to proceed for a given

failure mode.

3.6 Collecting measurements for individual

failure modes

As mentioned earlier, one of the challenges of FDI for

systems with on-off actuators is that failures are only

observable when active (as defined in Section 3.1). For

example, "off" failures are observable only when the jets

are commanded to fire. For each failure mode, only the

relevant _a_turbing measurements are stored. So for failure

mode #1, any time RCS jet 1 is commanded to fire, the

resulting _distwrbi_giS logged. These two steps of

windowing and collecting data can be considered a type of

filtering; however implementation as described here avoids

introducing any phase lag between the cause (thruster
firings) and effect (vehicle motions), as would be

introduced by a linear IIR or Kalman Filter, that would bias
the FDI.

3.7 Maximum likelihood

Although the acceleration estimator is nonlinear and sub-

optimal, it is reasonable to assume that the estimated

disturbing acceleration readings, _aisturb_z, are normally

distributed about the true disturbing acceleration values,

6tajst_rb_s.. So the probability density for the mac

disturbing acceleration values, [_'disturbing* , conditioned on

the measurement history M, is [2] [3]

p(a,mt_rb,,_.lM)=(2_)-'/21Pc_[-'/2...

e -±2[_"='*_ ,.-_"...... f& -' to. .... .-_.._.,J)"

Given disturbing acceleration measurements, _disturbing'

and knowing the disturbing acceleration values

corresponding to each possible failure mode, Oldisturbin$i,

the most likely failure mode is found by finding _e

O_disturbingi that maximizes this probability density

function. The subscript i indicates the failure mode number

corresponding to the disturbing acceleration. This function

is maximized when the likelihood argument, )_a_,;, in the

following expression is minimized:

_'activ¢i =(C{"dfsturbing--{_disturbin_p_-l(_di, turbin,_--[fgdisturbin)

This expression is calculated and used both to detect and to

identify failures. The likelihood argument, )_.._ti_,i, is also

calculated, using the same equation as above, but using data

from periods where the failure mode was not active.

3.8 Fault detection

At each FDI update, for each possible failure mode, )_cu_,i

is evaluated using the windowed readings. The likelihood

argument corresponding to no failure, )_ri_,w, is evaluated

using the same windowed relevant readings, but with zero

substituted for _disturbingi" A fault is detected when the

ratio of likelihood arguments, )_n_,_/)_cti_e, iO falls below a

threshold; this is a generalized likelihood ratio test [8].

Further tests are then performed before identifying a

particular failure mode, as described below. Evaluation of

individual )_ai_,w's for each failure mode is critically

important - evaluating )_n_,o based on all (windowed) data

may not indicate a failure if a failed-off thruster has not

fired recently.

3.9 Fault identification

After a fault has been detected, at each FDI update, the

likelihood arguments, )_n_,i and _nacav_i, are calculated

using all relevant data since the time of detection and

compared to certain thresholds and to each other. If a

failure mode is true, both _ctive, i and _,,ca_,i should be low,

indicating the failure mode i fits the data well when it is

both active and inactive. This is used first to remove failure

modes ,from consideration - if _,_i or )_,,_t.,_,: ever rise

above a threshold, failure mode i is decided to be false and

removed from further consideration. Then, for a fault to be

identified, _ctive, i must be below a "low" threshold while no

other faults are below a high threshold.

Some faults are virtually indistinguishable from one another
^

(in terms of the resulting O_disturbing), such as this set of four

(referring to Figure 2): axial 1 off; axial 2 off, axial 5 on,
axial 6 on. The on vs. off failure modes could be

distinguished if translational accelerations were used for

FDI. The alternative approach taken here to identify the

failed thruster is to alter the axial firing pattern (e.g.,

changing from I-2-3-5-6-7 on to 2-3-4-6-7-8 on) while

maintaining symmetry. Since the firing pattern is adjusted

to identify the failed thruster, once the failure has been

identified, the pattern is left in a state that makes the failure

inactive, providing reconfiguration as well as FDI in this

case. FDI-driven excitation of failure modes such as this

example is generally valuable in expediting the

identification.



3.10FDI based on IlLS analysis

In an initial attempt at solving the FDI problem for the X-

38, the authors used recumive least squares (RLS) analysis.
As had been done in [10], thruster parameters were

identified using an exponentially weighted ILLS algorithm.

This approach did not provide sufficiently reliable FDI for

the X-38 application for three main reasons:

1. Relatively high noise levels were present (primarily

due to gyro noise and pulse-to-pulse thruster variation).

2. Exponential weighting meant that thrusters fired

relatively sparsely (e.g., RCS thrusters as compared to

axial thrusters) were not identified well

3. Since multiple axial thrusters are fired continuously,

observability of those parameters was very low.

A second, "targeted" RLS-based approach used multiple

RLS algorithms, each one identifying the strength of a

single thruster with the assumption that all other thrusters

were operating nominally. This effectively addressed

problems 2 and 3 above, but problem 1 remained. Also, the

assumption that all other thrusters are nominal causes

partial false positives when the failed thruster fires at the

same time a good thruster fires. Methods were developed to

address these remaining problems, but results were not

sufficiently reliable, motivating development of the
maximum-likelihood-based solution.

3.11 Efficiency, Extensions

Many of the terms needed in this analysis, such as

aaist.rbi.gi, can be pre-computed or updated periodically.

The algorithm is then relatively efficient. It scales better

than linearly as more failure modes are added, since some

information is shared between analyses of different failure
^

modes (e.g., estimating {_disturbing).

This method extends naturally to include translational as

well as angular accelerations. This has been implemented in

simulation and provides better discrimination between

faults since the comparison space is of higher dimension. It

was not included in the results presented here since the

gyros provided sufficient p.erformance for the X-38

application, and to demonstrate that the method will work

for systems with gyros only.

This algorithm has been applied successfully to two other

vehicles, the Mini-AERCam mentioned in Section 1, and a

3-dof air-bearing vehicle at the NASA Ames SSRL,

demonstrating its generic applicability.

Since it is calculated using nominal mass properties (center

of mass location and I, om), the _disturbing estimate is

sensitive to off-nominal mass properties. An RLS-based

mass property ID method has been developed and

implemented in simulation to address this issue, although it

was not used to generate these results.

4. FDI applied to the X-38
The FDI algorithm was applied tO the X-38, with 40

different failure modes simulated, including each of the 8

RCS and 8 axial thrusters being failed-off or failed-on (32

single-jet failures) and 4 pairs of RCS jets being failed off

or on (8 multiple-jet failures). Every mode has been tested

multiple times and detection and identification is always

accurate and within 5 seconds. Fault detection usually takes

only 0.5 seconds, and most failures are identified within

about 1.0 second 1. Th_ switching of axial thrusters to

distinguish between similar failure modes in some cases

causes the time for identification to approach 5 seconds.

An example case is discussed here and shown in Figure 4,

for Rcs jet 1 failed off. The top part of Figure 4 shows the

thruster ftring history during this 33-second run. The first 8

rows show the RCS jets pulsing to regulate attitude. The

next 8 rows show that axial jets 2-3-4-6-7-8 were on

continuously during this run. The next 4 rows correspond to

the multiple-jet failure cases, and show when at least one of

the jets was commanded to fire. Below that is a zoomed in

view of the detection and identification of RCS jet 1 failure.

Below that is a legend corresponding to the thruster history

as well as the animation screen below. The bottom part of

the figure shows a rear view of the vehicle with thrusters

firing, torque monitors indicating the net torque produced

by the axial and RCS thrusters, and the fault identification

result along with a visualization of the likelihood argument,

_ctiv¢.i by drawing a rectangle with width exp(-O.5)_cn_.i).

In this simulation, the vehicle starts off with initial angle

and rate errors that are largely corrected by thruster firings

in the first two seconds. RCS jet 1 abrupt/y fails off at 3

seconds, indicated by the gray rectangle, but it is not

detected until after it fires 23 seconds later. The fault is
detected at 26.5 seconds (indicated by the vertical red line),

after 0.6 seconds of firing, and is identified at 29.7 seconds

(indicated by the change in color from green to red), after a

total of 1.0 seconds of firing.

The animation screen at the bottom of Figure 4 was from

the final update of this simulation run. RCS jets 1 and 6 are

both commanded to fire (as also seen in the thruster history

screen), but RCS jet 1 is drawn red, indicating that it has

failed. The axial-thruster torque monitor shows minimal

torque since the axial thrusters are fired symmetrically and

the CM is near the center of the jets. The RCS-thruster

torque monitor shows a yaw and a roll torque, caused by

RCS jet 6.

I Since failure modes may not be observable depending

upon whether their thrusters are commanded to fire, the
detection and identification times listed indicate the total

duration for which the failure was active.



Figure 4: Example simulation run for the X-38

The likelihood monitor bars on the right side are drawn

with width equal to exp(-O.5_ca_,i) so they approach 1.0 if
the failure is true. This value is close to 1.0 for failure mode

1, and since RCS jet 1 has been identified as failed, it is

highlighted in red. RCS jet 2 failed on produces a

disturbing acceleration signature close to that of RCS jet 1

failed off, which is why exp(-O.5_cn_,22) reads above zero

(about 0.25). The situation is similar for RCS jet 4 failed
on.

In extended testing, the FDI system presented here correctly
identified failures in 99.98% of test cases.

5. Conclusions

A maximum-likelihood-based thruster FDI algorithm has

been developed and applied in simulation to the X-38

spacecraft. The algorithm is capable of reliably detecting

and identifying hard, abrupt single- and multiple-jet on- or

off-failures within 1-5 seconds. The algorithm as presented

uses gyro signals only, making it applicable to a large

number of spacecraft; however, extension to additionally

use accelerometer signals has since been implemented,

providing even better discrimination between similar

failures. The algorithm is computationally efficient and

scales better than linearly with the number of.failure modes
to be identified.
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